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PREFACE

Nonmathematical Summary

This study is concerned with the problem of choosing the amounts
Xys%p, cesyk  OF & single product. (or aggregation of szveral products)
to produce in each of n successive time periods 1,2,...,n 80 as to
minimize the total manufacturing costs over the n periods. The re=
quirements TysTprreesTy for the produect oceurring in periods 1,2,...,n
are assumed to be known in advance. Requirements in & period are
satisfied in so far as possible from stock on hand at the beginning of
the period and from production &uring the period. Requirements which
cannot be met in thie way are backlogged until they can be satisfled

by subsequent production.

s .
Let y, = le (xJ-rJ). If y, 20, then y, 1s the amount of

inventory on hand at the end of perled 1. If vy is negative, then
=¥y 1s the total amount by which the cumulative requirements exceed
£he cumulative production in the first 1 periods. We suppose that
this excess, ¥y 18 backlogged until it can subsequently be satlsfied.

Denote the cost of producing x, units in period 1 by e i(xi)'

i
The cost of storing yi( 2 0) units at the end of pericd 1 is denoted
by hi(yi)' When y, <0, hi(yi) is the penalty cost incurred because
-yi unites of requirements are backlogged at the end of period 1.

We suppose that there are given upper and lower limlts ?c_i
(51 < Ei) respectively on production in period 1 (= 1,2,...,n). In

and Xy

addition there are given upper and lower limits S'ri and y, (gg < ii)
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on yi in periocd 1 (=1,2,...,n-i); and no inventory or backlog is

allowed at the end of peried n, i.e., ¥y = 0.

The problem is to choose production levels XysoeesXy that

minimize the total cost

)
i=

n=1
! e, (x,) + 1}=:1 h, (yy)

over the n periods subject to the sbove named constraints.

We assume that the cost functions ¢ are convex. For

i i

and h

example they might appear &s in Figure 1.

éiﬂxi)

>
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Figure 1

(The functions in Figure 1 are convex because the chord connecting any
two points on the graph of either function does not fall below the
gravh of the function between the two given points.)

The objective of ocur study is to determine the effeect of changes in
the requirements and capacity limitations (production, storage, backlog)
upor. the optimal production levels. We show that the optimal production
level in & given period is a non-decreasing function of (1) the require-

ments in any period, (2) the upper and lower production capacity limits
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in the given period, and (3) the upper and lower storage limits Y in
the given and all succeeding periods; the optimal production level in
a given period is a non-increasing function of (1) the ﬁpper“andllower
productioﬁ capacity limits in any other period and (2) the upper and
lower storage limits in all preceding pericds. The above results also
lead to simple and efficient computational procedures for finding
optimal production quantities.

As an illustration of these methods, suppose that the productionr
levels are assumed to be integers. Suppose also that we have optimal
(intcger) production levels Xy500s%, for the (integer) requirements
TiyeeesToe We seek optimal production levels xi,...,xé for the re-
quirements ri,...,ré vhere ri + 1 for some k and ri =T, for
1 A k. In this circumstance we show that there is an integer J (not
necessarily equal to k) for which xé = x‘j *1and xi = X, for 1 ﬁ J.
Example:

As an example of the way in which this result can he applied to
find an optimal production schedule, suppose the data are as given in

teble 1 below.

In this discussion backlogged requirements are viewed as negative
inventories.
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Table 1
tlry | % |z [F ey ey (@)] eg(3) [y (-2) |0y (1) In,(2) My (3)
1|-2 3] -1 2 10 21 33 T i 3
2 1 3 0 3 13 26 ko 2 5 8
313 2|-2] 2 9 28 10 1 2
i1 o

Also ¢,(0) =h,(0) = x, =0 forall i.

!
The idea is to begln by defining a sequence of requirements for which
there is only one feasible set of production levels. For example, if
ry =2 1,20, Ty = 1, ry =1 then x; =0 for i=1,2,3,4 is the

for all 1. We

only feasible set of production leve
now increase the requirements one unit at & time until we obtain the
requirements in teble 1. At each stage we find a corresponding optimal
collection of production levels.,

We begin by increasing the requirements in (say) period 3 to two.
From what we have gsaid above, this requires us to produce one additional
unit in one of the first four periods. Increasing production in periods
one or four is not feasible, the former becmuse the upper inventory
limit in period one would be violated and the latter because the upper
1imit on production in period four would be violated. The cost of

producing the one unit in periods two and three is
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¢2(1) + hl(e) + h2(3) + h3(l) = 13+3+8+1 = 25
and

c5(1) + h1(2) + h2(2) + h3(l) = 9+3%+5+1 = 18

regpectively. Thus, the production levels Xy = 1 and X, = 0, 143,

are optimal for the requirements r. = =2, r, 0, r3 = 2, r) = 1.

1
Next we increase the requirements in period two by one. This time the
most economical plan is to increase production in period two by one.
The final step is to increase requirements in period three agaln by
one unit obtaining o= =2, P =], r3 = 3, r, = 1. The best plan is

now to increase production in period two by one, obtaining X, = 0,

X = 2, x5 =1, x), = 0 as the final set of optimal production levels.
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PRODUCTION PLANNING WITH CONVEX COSTS:
A PARAMETRIC STUDY

vy
Arthur F. Veinott, Jr.

1. Introduction and Bummary

We consider the problem of choosing the amounts xl,xz,...,xn of
a single product to produce in each of n successive time periods
1,2,...,n 8o a8 to minimize the total manufacturing costs over the
n periods. The requirements rl,re,...,rn for the product occurring
in periods 1,2,...,n are known in advance. Requirements in a period
are satisfled in sc far as possible from stock on hand at the beginning
of the pericd and from production during the period. Requirements which
cannol be met in this way (because, for exemple, of limited production
capacity) are backlogged until they can be satisfied by subseguent
production. It is convenient in the sequel to view backlogged require-
ments as a negative inventory. Similarly, disposal of ("excess") stock
is viewed as negative production.

We edmit two types of costs in a given period: production and
holding, the former being a disposal cost when the production level is
negative and the latter being s backlogging cost when the inventory
level is negative, These costs are assumed to be convex functions
respectively of the gquantitlies produced during and stored at the end of
the period. In addition we permit upper 2nd lower limits to be imposed
on the amounts produced and stored. The cost functions and quantity

limitations for successive perlods need not be the same.
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The model can be interpreted in & variety of different ways including

service scheduling, warchousing decisions, and distribution of effort.

Fe—_—

Several of these possibilities are discussed in [4] and (7).
Our objective is to study the effect upon the optimal production i

levels of changes in the parameters, 1.e., the requirements and

quentity limitations. In the event that the total cost function is

strictly convex, the optimal production quantities are unique. For

[Rpm——

thls case our two main results are easily stated as follows. First,'
the optimal production level in a given period is a non-decreasing 3

function of (1) the requirements in any period, (2) the upper and

ey

lower production capaclty limits in the glven period; and (3) the o

upper and lower storage limits in the given and all succeeding g 1
periods; the optimal production level in a glven period is a non- ( F
increasing function of (1) the upper and lower production limits in ?I a
every other period and (2) the upper and lower storage limits iﬁ any |

preceding period. Second, the optimel cumulative production levels

i3 ey

Xl,XE,...,Xn are each non-decreasing functions of the cumulative

1
requirements R,,R,,...,R 1in each period, where X, = ng x4 and

PYpreeney

i
Ri = z r‘j for all 1.

J=1

The first result is of interest for studies of possible changes
in the production or storage capaclties, or changes in the minimal .
guaranteed production level. The first result is alsoc the basis for

some efficient parametric programming procedures to be described later.

jrmes o

The second result is useful in forecasting. For example suppose that

[

we do not know the actual cumulative requirements Rl’RQ"'°’Rn’ but

Ty
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can forecast maximal and minimal cumulative requirements §i’§2"“’§n

and 51’52""’Bn respectively with assurance that Bi S,Ri < Ri for

all 1. We may then compute the corresponding optimal maximael and
mininal cumulative production levels xl,xa,...,xn and gl,ga,...,zn
and be assured that the cumulative production levels xi,xa,...,xn that
are optimal for Rl’RE""’Rn- are such that Ei < Xi < Xi

At the beginning of period one we will ordinarily only have to

for all 4.

choose Xl and not subsequent production levels. If it happens that

Kl = El — and this can occur even when the ﬁi and Ei are not all

the same — then the optimal amount to produce in period one is determined
as El without complete knowledge of the Ri' If instead zl < il'
then improved forecasting 1s needed in order to determine the qptimal
value of Xl. The value of narrowing the forecast interval in various
periods can be assessed by determining 1ts effect upon the width of the
interval [gl, il].

The rather intultive relations described above between the optimal
production levels and the various parsmeters do not hold in general,
but do seem to be velid in & number of-situations not encompassed by
our hypotheses. It is somewhat surprising, however, that the results
may fall to hold when the total costs are convex but cannot be expres-

gsed in the form assumed in this paper. For example, suppose the total

cost for a two period model is
max(x2,5x1 + 2x2-6) .

This function is convex since the maximum of two linear functions is

convex. However, if the requirements are T = ro= 1, then the optimal




production levels are *= 2, x, =0, while if »r.=1, ry= 3 the

2 1
optimel production levels are xq= 1, X,= 3 (assuming X2 = R2 and

20, x, > 0). Observe that neither of our two results holds here.

2
The fact that the optimal production quantities are non-decreasing

X

functlons of the requirements leads lmmediastely to an extremely simple
procedure for computing optimsl production schedules., In order to
Justify the elgorithm we are about to describe, it 1s necessary to

make two additional assumptions. First, the cost functions are piece~
wise llnear with the endpoints of each of the intervals on which the
functions have linear segments being integers also. Second, the require-
ments and the upper and lower limits on production and storage are all
integers. Under these conditions we show that there are optimal
production levels that are also integers. l/

In the most elemental problem wilth which our algorithm deals, we
start with optimel production levels XyseoosXy (all integers) for a
glven sequence of requirements ToyeeesTpo We then wish to find cptimal
production quentities xi,...,xé for the new requlrements ri,...,ré
vhere i =1, +1 (= ri-l) for some i and rj =Ty for § # 1.

Our basic result is that there is an integer k(1 Lk< n) for which

o=x +1 (= xk-l) and xé = X, for 3 £ k. This means that in

Y This fact 1s not surprising since several authors (1], [6] have
shown that special caseg of our model can be formulated as
transportation type linear programing problems for which integer
solutions exist. (The amounts "shipped" and "received" must be
integers, of course, as they would be under our assumptions.)

Our problem can slso be formulated in this way.

4
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order to find {xj] s 1t suffices to 2compute the total cost under each of
the n possible production sequences (corresponding to k=1,2,..., n),
and then to choose the cheapest one.

Our approach to more complex problems involves solving & sequence
of elemental problems. For example, suppose that we seek optimal pro-
duction levels xi,...,xﬁ for a requirements sequence ri,...,rﬁ for
which the rj

of requirements TyseeesTy for which there is only one feasible set of

are arbitrary integerc. We begin by defining a sequence

production levels L ERRRTE S To illustrate, if disposal of stock is not
allowed, we may choose xJ=rJ=O for all J (provided that this choice is
feasible). We then construct a new requirements sequence by adding
+1(-1) to any T for which (rﬁ-rd) is positive (negative). Next we find
an optimal production schedule for the new requirements sequence using
the technique described in the preceding parsgreph. We then repeat the
process after replacing the original rJ by the new requirements. We
continue in this way until we find that rj = r'j for all J, at which
point the original problem is solved. The process must terminate because
at each stage we reduce S;lrj-rd by +l.

When the rj are aii non-negative, one can view the above process as
satisfying each unit of requirements in turn as cheaply as possible., The
speclal case of this procedure in which reguirements must be satisfied in
order of their due dates 1s shown by Johnson [2] to be optimal for the
speclal case of our problem in which no backlogging is allowed, no storage
limits are permitted, and the inventory carrying costs are linear.

The parametric programming procedure that we have described above in-

volves only changes in the requirements. In section 4 we develop a generalized

the
procedure in which changes in/production and storage limits are allowed as well.

5
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Alternative procedures for solving the problem considered by
Johnson are offered in [L], [5], and [8]. In [9] a generalization of

Johnson's procedure 18 shown to be epplicable where the price recelved

for each unlt of product sold depends on the quantity sold. &/ A dynamic

brogramming procedure that solves the general problem in this paper and
that neatly exploits the convexity assumptions is given in [4].
References to earlier work will be found in [1], [L4], [5], [6], [7],
(81, (9.

We outline the plan of this paper. The problem is formulated in
section 2. We establish certain fundamental inequelities in section 3.
In section 4 we develop computational procedures for finding optimal

production levels.

2, Formulstion of the Problem
Let Yo be a given constant and let
S (xory)
(1) ¥, = X, =T + Y, for i= 1,2,000,1’1 .
1 =) 373 o

We interpret lyil as the total amount of stock on hand at the end
of period 1 when ¥y > 0, and as the total amount of backlogged

requirements at that time when ¥y < 0, We are implicitly assuming

AN

}/ Actually our model provides for this possibility by sllowing
disposal of stock. We omit a discussion of this point, however.
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that it is not possible to end a perlod with both a positive inventory
and a positive smount of backlogged requirements. Similar remarks apply
to production and disposal in a given period.

There are given upper and lower bounds, §ri and y, (< Sfi) on

yi, i.e.,
(2) z’i 5 yi 5 i’i for i = l,2,.-.,n-l °

Observe that by choosing ¥y = 0 for ell i that we eliminate all
backlogging. We may also allow minimum inventory levels (e.g., a8 &
hedge against uncertainty) by letting ¥y be positive.

We suppose that

. (5) i{i S x1 5 ;C_' for i = 1'2,c||,n

where the :'ci and X, (?-‘:L < ii) are given constants. The presence of
minimel production levels enables us to study the effect of different
guaranteed employment policies.

Let g(x,r) be the total cost apsociated with the production
schedule x = (xi) and requirements schedule r = (ri). Y We assume
that g can be written in the form

(%) (x,7) 3 (%,) nil (v,)
)T) = + h
glx,r 1§=::L e, (x, 2 B ¥y

y We write 2z = (zi) to mean that 2z 1is a vector whose 1th

coordinate is Zy.




vhere ey and hi are convex and continuous on the intervals
[gi, Qi] and [gi, &i] respectively. In applications ci(xi) is
the cost in period i of producing Xy units if_xi Zro:and of disposing of
=X, upits'if x, <0 hi(yi) is the cost in period i of carrying ¥,
units in inventory if vy > 0 and of backlogging =¥y unites if
y, <O.
There 1s no loss of generality in assuming that yo = 0 since,
by virtue of (1), (2), and (4), we may replace r, by (rl - yo).

This substitution could lead to a negative value of r.-a possibility

that we do not rule out. Indeed we permit any of the r, to be negative.

Our finel assumption is that
(5) Yy = 0 s

which states that we must end period n with no inventory or backlog.

It is convenient to let x = (%), x= (), ¥= (51) s
Y= (yi), and p = (-1, X, Xy Vs y). We call p & parameter set.

In the sequel we shall say that the production schedule x is
feasible for the parsmeter set p (or briefly, x is feasible for
p) if the restrictions (1), (2), (3), and (5) are satisfied. If x
minimizes (4) subject to the above constraints, we say that x is
optimal for p. Finally, we say that p 1s feasible if there is an
x that is feasible for p.

Since the collection of feasible production schedules is compact
whenever p 1s feasible, and since g 1s continuous, there existe an

optimal x whenever p 1s feasible.
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In certain situations it is desirable to drop the assumption (5).
When this is the case we shall suppose that there are given limits
Xh and in on the inventory level at the end of period n. We can
then imbed the original n-period problem in an (n+l)-period problem

in vhich (5) does hold without loss of optimality.

In the extended problem we put Toi™ Yy Xp1= V= T2 Epep =

0,
and let cn+l(z) =0 and hn+l(z) = 0 for all z. Denote by x any
feasible production schedule for the n-period model in which (5) is

not imposed. Then 1n order for the schedule X = (x, x_,.) to be

nt+l
feasible for the (n+l)-period model in which (5) does hold, we must have

0= = + X -

Yo+l "0 T *nl T Tl
by (1), Hence, x =7 - ¥ . This uniquely defined vslue of
~J o A=y e SASaeL ~J - kb V]

m+l  “ntl  ‘n
¥4 ©8lso satisfies (3) for 1 = n+l Dy virtue of the definition of
the perameters for period n+l.

We now show that x* i1s an optimal schedule for the n-period
model in which (5) need not hold if and only if x* = (x¥, x;+l) is
optimal for the (n+l)-period model with (5) holding. First suppose
that x* 1s optimal for the n-period model and that X = (x, xn+l)
is any femsible schedule for the (n+l)-period model with requirements

schedule T = (r, r Then x 18 feasible for the n-period model.

n+l)'
Mso g(%,T) = g(x,r) > glx*,r) = g(x*,T), which was to be shown.
Now suppose that X* 1is optimal for the (n+l)-period model. Then
glx,r) = g(x,T) > g(x*,7) = g(x*,r), which completes the proof.

The sbove remarks enable us to confine our discussion in the sequel

to situations in which (5) holds.

gy




3. The Fundamental Inequalities

In this section we establish two important inequalities that relate
the difference between two parameter sets to the difference between the
corresponding optimal production schedules. In order to state the first
result it is convenient to introduce a definition. Let 2z = (zi) be
an (n-1) coordinate vector of real numbers. Let wm(z) be the corre-
sponding n coordinate vector of real numbers whose 1%h (1 <1 <n)
coordinate is ?%é.z and whose nth coordinate is zero.

J

Theorem 1

Suppose that » = (-r, X, %, ¥, y) end p' = (-r, X', x', ¥', y')
are feasible peresmeter sets and that p' < p. Yy If x(x') is optimal

ar p(p'), then there is an x'(x) that iz optimel for

t{m) and
’ - \ W/ o

? alile

that satisfies
(6) (x'-x) 2 -(%-%")-(g-x")-n(F-F")-m(g-x') -

Before proving the theorem we note briefly some of its implications.

Observe that if p and p' coincide except that r' > r, then (6)

Y let v = (v,) and w = (w,) be vectors of real numbers. We say

that v > w 1f vi > wi for all 1.

10
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states that x' > x, l/ On the other hand if p &and p' are identical

except that Ei < ;i for some 1, then (6) states that xj > %,

JA1 and x} 2 xi-(ii-ﬁi « Finally, if p and p' differ only in

for

that ;i < §i for some 1, then (6) states that x3 > XJ'(ii-ii) for

J<£1 and x!>x, for J>4i,

J J
We remark that the inequelity (6) can be sharpened at the expense
of complicating its statement. The simpler treatment is adequate for

our purposes, however,

Eroof:

Tt is convenient to let y = (yi) and z = x-(X-%')-(x-x')-
n(y-y')-m(y-y').

We prove only the first part of the theorem, i.e., if x is
optimel for p, etc. (The proof of the second part is similar and
will not be detailed.) We do so by showing that for any schedule
x* <that is feasible for p!' and that does not satisfy x* > z, there

is an alternative schedule x' such that

This special case of theorem 1 was motivated in part by theorem 2',

p. 245 in [3], which applies to & generslization of our problem in
which the requirements in each period are random variables.
Theorem 2' in [3] 1s not as strong as our theorem 1 for the case
of deterministic requirements. In our notation theorem 2' asserts
only that xi 2 X1+ In theorem 2 of this paper we shall show that
the inequality xi > x, holds under the weaker condition that

) . 1
Ri 2 Ri for all 1.

11
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(1) x' 1is feasible for p';
(11)  alx',r') < glx*,r');
(111) (x'-x,x'-2,y'-y) has one (or more) fewer non-zero coordinates

than (x*-x,x*-z,y*-y), Y

Assuming for the moment the truth of the above result, observe
that either x' > z or, upon replacing x* by x', that it is
possible to construct a new x' having the properties (1), (ii),
(411). Since at each repetition of this procedure we either terminate
by finding an x' satisfying (1) and (ii) and having the property that
x' 2 2z, or we reduce the number of non-zero coordinates of (x'-x,
x'=2,y'~y) by one, we must terminate in at most 3n-1 steps. To complete
the proof of the first assertion of the theorem, it ia sufficient to
observe that if x* is optimal for p', the x' that is obtained at
the termination of the above process satisfies the conclusions of the
theorem.

It remains to describe & procedure for constructing a schedule x!
with the properties (1), (i1), (ii1). Since x*} z, there exists an

i, 1 €1 <n, for which xi < z; . It is convenient now to consider

two cases, Vi, SV, e YE, > vy, -

In order to conserve space we have not stated explicitly that
y* 1is the vector of inventories associated with x* and r!
because the notation mekes this fact evident. For the same
reason we shall subsequently refer to y* without identifying
it as the 1th coordinate of y*. We shall follow a similar
practice hereafter when no ambiguity will result.

12




Let J be the smallest integer greater than i for which

x* > x,., Such an integer must exist for if not

J°

which contradicts (5). The inequality follows from the fact that
* * -
yi_l < Yyo1 b X < 2y < X 03 X < X, for t = 1i+l, 1+2,.44,n 3
1
and re 2> ry for all 4.

Let € = min(z i-x;{, xg-xd). It follows from the preceding dis-

cussion that e > O, 1In addition, as we now show,

(1) %=X} >e.

z > ¢ yi-yg > e for t=i,it+l,...,J-1; and x¥-x

3

The first and last lnequalities follow from the definition of ¢, The

intermedlate inequalities follow from the first inequality and

t £
(8) YoV = Yi1Via - k§=:i (remry) + k§1 (ge-xg) 2 %=}

Now define an alternative production schedule x' by

th coordinate unit vector,

tom x* -
x x* + e(ui uJ), where W is the k
i.e., the kth coordinate of Uy is +1 and all other coordinates
are zero. We show that =x' is feasible for p' as follows. Using

(6), (8), the definition of ¢, the hypotheses of the theorem, and

the feasibility of x and x* respectively for p and p', we have

13




t * * = x! wl(® =x! X!
(9) xfSxf<xf+re=xj<z <x (xi xi) <x
and

".‘35’.‘35%

Thus since x{ = x} for % # 1,3, x* satisfies (3). Also for

1<y,

1 * <& y¥ = y! Y * -
Iy S hie < t te Vg s t * ¥ =% te
* - (V. -yt
< Vg * xi 24 (yt yt) * 5

* v! ¥,
< X -2 + v +e<g Y

For all other &, y! = yt, so that x' satisfies (2) and (5).
Thus x' satisfies (i).

In the following we denote by D+f(x) and D f£(x) respectively
the right and left hand derivatives of a funetion £ at the point x.
When the function is convex, as will be the case in the succeeding
discussion, we may be assured that the right and left hand derivatives
exist.

Using the convexity of Cy and ht and (7) we have

glx*,r!) - glx',r') = ¢ (x}) - c,(x}+e)

3-1
+ (h, (y)-h, (y¥+e)] + e, (x¥)-c, (x%-€)
k§1 A A A D M

J=1
> e[-DTe, (x¥+e) - kzi D'hy (y+e) + D+cj(x3-e)]
- . +
Z E[-D ci(xi) - kzi D hk(yk) + D cqj(xj)] .
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In view of this inequality we may establish property (ii) by

showing that

-1 :
(10) -D-ci(xi) - igi D'hk(yk) + D+cJ(xJ) >0 . ‘

To prove (10) we show first that the schedule x(8) = x-&(ui -1 .j)

S

is feasible for p provided that 0 £ 8 < e, Assuming for the
moment that we have done this, we note that x is optimal for

and therefore that

- ~
Elx(0),0)-gxr) 5 o tor 0<Bge .

Letting & —» O+ , the above inequality becomes (10). ‘ ,
It remains to establish the feasibility of x(B)., Using (6), (8),
(9), the definitlon of €, the hypotheses of the theorem, and the

ferslbillity of x and x¥* respectively for p and p', we have

N ]

-2, +x! <X

i -e <x,(8) <x, <x,

i 1

and 1

Also for 1<t<],

Ve STy -2y v X S -2 PV m W T

- * - T .
SV -2t xp Sy - e Sy (8) Sy <7y

15




FOI‘ 't ; 1,3, xt(5> = x.t

that x(8) is feasible for p as claimed.

and for t <1 and t2J, y,(8) =y, so

To establish (111) we observe from the definition of ¢ that all
put the 1™ and Jth coordinates of (x'-~x) and (x*-x), &and of (x'-z)
and (x*-z) are identical. Also all but the 1B through the (.j-l)th
coordinates of (y'-y) and (y*-y) are the same. On the other hand

the 18 h

and Jth coordinates of (x¥*-x) and (x*e~z), and the 1%
through the (J-l)th coordinntes of (y*-y) are all non-zero. But at
least one of these coordinates in (x'-x), (x'~z), or (y'-y) is zero,

which proves (ii1).

Case 2: y;_l > Yyl

Let J be the largest integer less than 1 for which xg > xD'

Such an integer must exist for otherwise

15“1 ( ) 15:1 ( )
y* = x¥ap! S X, =T =Y -
117 4 TS 2 T SV

if 1>2 and y* =y

. o = 0 1if 1 =1, which is a contradiction.

= -x® . y* - R > 0.
Let ¢ min(zl XI, x’ x], $-1 y! l) Clearly € 0 In

Ko . - -1 -y ¥
(11) xdsze,yj;ytge for J<t<i-1; x-xf>e€.

The firet and last inequalities follow from the definition of ¢, It

remains only to observe that for J <t <i-1,

16
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1-1 1-1 _
Yy, =V Ve = & (xex ) + (ri-ry ) 2 ¥ 1=y, 2 €
AT S UL T T A k=§#1 xx’ 2 ViV

which establishes (11).

We define an alternative schedule x' for p' by =x' = x*+e(ui—uj).
The proof that x' satisfies (3) is precisely the same as for case 1.
Now for § £t <41, wse have using (11), the hypotheses of the theorem,

and the feasibility of x and =x* respectively for p and Pp' that
Ve SY SV SPe =y <Wp ST

vwhile for all other t, yf = y%, so that x' satiefies (2) and (5).
Thus property (1) 1s established.

If we now employ (11) and the convexity of the e, and ht’ we

t
find that

glx*,rt) - g(x',r') = cJ(xj) - cd(xg-e)

1-1
kz% [ (v) = my (-e)] + ey (x}) = ey (xfre)

+

B + i-1 - -
e[D cj(xg—e) + kZJ D hk(y;-e) -D ci(x§+e)]
+ =1, -
elD cJ(xJ) + kzj D hk(yk) - D ci(xi)] .

v

v

In order to verify property (ii) it therefore suffices to show that

i-1
(12) D'e,(x,) + ng D'n (3,) - De, (x,) 2 0 .

Let x(8) = x—&(ui-uJ). We show that =x(8) is feasible for p

provided that 0 < 8 < e. The fact that x(8) satisfies (3) follows

17
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from the same argument used in case 1. For J <t <1, we have from
(11), the hypotheses of the theorem, and the feasibility of x and

x* respectively for p and p' that
- -
Yy SV SV ST ST STy

and yf(&) =y, for all other t. Thus, x(8) is feasible for p.

Since x i1s optimal for p,

MMLEAM >0 for 0O<B8<e.

Letting 8 -0+ , we obtain (12).

The proof that x' satisfies (11i) 1s exactly the same as for
case 1 upon.interchanging the roles of 1 and Jj. This completes
the proof.

In order to state and prove our next theorem it will be convenient
to introduce notation for the cumulative production and requirements
schedules eassociated respectively with the production and requirements

schedules x and r. In particular let

X = (xl,xe,..., xn) and R = (Rl,RQ,..., Rn) .

Theorem 2

Suppose that p = (-r, X, x, ¥, y) and p' = (-r', X, x, ¥, ¥)
are feasible parameter sets and that R' > R, If x(x') is optimal
for p(p'), then there is an x'(x) +that is optimsl for p'(p) =and

that satisfles X' > X,

18
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The proof of the first assertion in the theorem (i.e., 1f x is
optimal for p, ete.) consists in showing that for any schedule x*
that is feasible for p' and for which X¥* é X, there is an alternative
schedule x' that has the properties (1), (11), (1i1) (let z = x
in (411)) given in the proof of theorem 1. Once this construction is
Justified, the first assertion of the theorem follows from an obvious
adaptation of the corresponding part of the proof of theorem 1., It
remains, therefore, to develop a procedure for constructing a schedule
x! with the properties (1), (ii), (iii).

Since X¥* E X, there is an Integer 1 <for which X; < Xi. Let
1 be the smallest such integer. Denote by J the smallest integer

greater thean 1 for which Xﬁ >X The integer J exlsts because

vy (5)

J.

¥ = Ria .
X*-X = RI-R >0

= . -v*)].
Let ¢ min[xi x}, x§-xy, iﬁiﬁ:j (yk yﬁ)] We have e > 0 since

-x¥ = - - -
xy-xf = (X=X ) - (X§-Xf ) >0

x3-xy = (X423 ) - (XX, ,) >0 end

J
VYL = (}Lk-Rk) - (x;-R}':) >0 for 1<k<}].

Now define the alternative schedule x' for p' bdy x' = x*+e(ui-uJ .
Thus yi = y§+e for k= 1,itl,...,3~-1 and yi = yﬁ otherwise. Using

these calculations it follows easily that x' satisfies (1).

19
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It is now possible to show that (i1) and (ii1) hold using precisely
the same argument as that used to establish the same properties in case
1 of the proof of theorem 1. This completes the proof of the first
asgsertion of the theorem. The proof of the second assertion of the

theorem follows in & similar manner.

L, A Perametric Programming Procedure

Theorem 1 plays a central role in this section in the development
of procedures for finding optimal production schedules. Our techniques
are especially useful when we seek optimal production schedules for
several different parameter sets. This is because we use the informe-
tion gained in determining an optimal production schedule for one
parameter set in an efficlent way to reduce the computatlons needed to
finc an optimal production schedule for a different parameter set.

In order to simplify the exposition in this section, 1t is con-

venient to impose the following assumption:

P: ci(xi) and hi(yi) are each piecewise-linear functions
with the endpoints of each of the intervals on which the

functions have linear segments being integers also.
The basic result on which the computational procedures of this

section rest is

Theorem 3

U]

Suppose that p= (-r, X, X, ¥, y) and p' = (-r', X', x', ¥', ¥')

are feasible parameter sets with integral coordinates, that {(p-p') 1is

20
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a unit vector, that P holds, and that x(x') has integral coordinates
and is optimal for p(p').

(&) 1£ (¥y',y') = (¥, y), then there is an x'(x) that is optimal
for p'(p) and that has the property that (x'-x) + (X-%') + (g-g')
is a unit vector.

(®) If (¥-¥y') + (y-y') = w, for some k, then there is an
x'(x) that is optimal for p'(p) and for which either (x'-x) = uy-u,
for some 1<k <J, or (x'-x)=0. Yy

We defer the proof of the theorem briefly in order to explore some
of its implications. The value of part (a) is that when we are given
an x that is optimael for p, we can find an x' +that is optimal for
p' (where the upper and lower bounds on inventory levels are unchanged)
by considering only the n production schedules obtained by separately
adding each of the n unit vectors to x-(x-x') - (x-x'). On the other
hand if we are told that x' is optimal for p!', part (a) assures us
that we need compare only the n production schedules cbtained by

separstely subtracting each of the n unit vectors from x' + (i-i') +

(x-x')

Example 1:
If x = (3,0,1) d4s optimal for p where r = (-2,6,0), X = (3,3,3),

x=0,5=1(57), ed y=(0,-2), and if p' is such that r' = (-1,6,0)

and (%', x', ¥', ¥') = (x, x, ¥, ¥»), then one of the three production

In this part uk has n-1 coordinetes while uy and uJ have
n coordinetes.

21




schedules (4,0,1), (3,1,1), (3,0,2) is optimal for p'. In ovrder to
find which one is optimal we first eliminate the infeasible schedule(s)
— in this case (4,0,1) — and then compute the cost associlated with

each of the remaining schedules.

2

Suppose in example 1 that we let p be defined as before and let
x' = (0,1,0) and (-r',x',¥',y') = (-r, %, ¥, y)» (Observe that these
definitions require us to interchange the roles of p and p' since
(p'-p)} 1is a unit vector.) Then one of the three production schedules
(2,1,1), (3,0,1) (3,1,0) is optimal for p'. Of these schedules, only
the second 1s infeasible.

Part (b) of the theorem states in part that if we have at hand an
x that 18 optimal for p, if one of the upper or lower limits on
inventory is reduced, and if none of the other parameters is changed,
then we can find an x' that is optimel for p' by comparing the

k(n-k) schedules x + u Uy, i <k <j, and the schedule x. This

J
comparison 1s almost as easy to perform as that in part (a), even
though superficielly the number of comparisons may seem to be as high
as %? -1 (when k = n/2) rather than n-1 as in part (a). The
reasgon for this is that the optimal values of 1 and J may be chosen
independently. This is because whatever the choice of 1 and J, the
inventory on hand at the end of period k is Yy
is the production schedule. The first k periods and the last n-k

-1 wvhen x + u'j-ui

periods can therefore be thought of as two separate sub-problems for
the purposes of this computation. Similar remarks apply when we are

given an x' that is optimal for p'.

22
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To summarize, theorem 3 provides & simple procedure for finding
an optimal x' for p' once we are given an optimel x for p
provided that + (p-p') is a unit vector. The procedure generslizes
easily to situations in which + (p-p') is not a unit vector but
where the other hypotheses of the theorem are retained. The technique
is to successively add and subtract unit vectors from p until p!
is obtained. Optimal schedules are found in order for each inter=
mediate parameter set using theorem 3. Formally, denote by
pl,pa,..u,pm'l the sequence of intermediate parameter sets produced
in the process of successively modifying p by adding and subtracting
unit vectors., Upon letting p° =p and pm = p', we see that each
pi(l <1 <m) ds obtained by adding to or subtracting from pi'l a
sultable unit vector. l/

If we have at hand an x° that has integral coordinates and that
is optimal for p°(=p), we can determine in order of sequence
xl,xe,...,xm of optimal production schedules for pl,pe,...,pm

respectively. Each xi(l <1 <m) is formed from xi-1 by applying

the appropriate part of theorem 3.

}/ The cholce of the pi 1s essentially arbitrary. Thus, if optimal
production schedules are needed for seviral paremeter sets, it may
be desirsble to define the sequence ({p®) s0 as to include these
sets, This may necescitate adding and subtracting the same unit
vector in the course of the computations. This creates no diffi-

culties but does increase the number of intermediate parameter sets

and hence the amount of computation. For a sequence {pi] in
which no unit veector is both added and subtracted, the number of
intermediste parameter sets will be

n
m-1 = z IPI;_-PiI-l .

23
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Two questions remain unanswered by the above discussion. First,
how can we find a p° tor which an optimal x° is easlily determined?
Second, what can be done if we find an intermediate parameter set pi,
say, that is infeasible?

We defer discussion of the second question until after we have
proved theorem 3. One answer to the first question is to define p°
so that only one feasible productlon schedule exists. That schedule
i1s necessarily optimel and provides a starting point for the computa=

tions. Two i1llustrations of this idea are given below. Let

i 1
X, = %X, and X, = %, .
1 ng 3 & ng Xy

Start 1:
Suppose that x° > 0 dis an arbitrary production achedule with

integral coordinates for which Xg = Ré . In many cases it will be

(<]

natural to let x~ be a "good guess" at an optimal solution. If we

o o _ =0 o -0 -, .0 o o
choose X =x =X, r =71, vy = max(yi,yi) and y; = min(yi,yi)

for all 41, then xo is the only feasible production schedule for

(]

p° = (-r°

=0 o =0 [o]
s X, X, V¥, Y )e

Start 2:

Suppose that x° = x'(X') and that r° 1s such that r° < rt (2° >r')

(o]

O _ yr (%t 20 _ 2t(C o 4t 50 _ a1 0
and R = gn(xn)' Let x =x'(x =x'), ¥ = max(yi,yi) and

o 1%

zi = min(gi,yg) for all i. Again x is feasible and no other

schedules have thies property.

2k
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The sbove starting points are intended to be suggestive and
naturally 4o not exhaust all the possibilities. For example, an
obvious counterpart of start 1 is to set z? =y° =5

We now give a

Proof of theorem 3-part a:

We consider only the case where an optimal x i1s given for

The proof of the other case is similar and is therefore omitted.

By the first assertion of theorem 1 — and this 1s the key point

= there 18 an x' that is optimal for p' and that satisfies x' > z,

where 2z = x=(X-%')=(x-x'). The remainder of the proof consists in

showing that g(x',r') is linear in x' for all feasible x!

vwhich x' > 2z, The theorem follows easily from this fact.

1
It is convenient to let Z, = I 2z y forall i. Ve shov that
J=1

(13) Rl =2 +1.,

There are two cases, r!' >r and r' =r. In the former event

n

Rt =R +1=X +1=2 +1.
n n n n

In the latter case

R!' =R
n

X =2 +1 .
n n n

In view of (2), (3), (13), and the fact that x' >z, we have

(k) max(Ei,zi) <xp < min(ii,zi+l) for 1=1,2,...,n

25
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and

(15) max(yi,zi-Ri) < X{-R} < min(}'ri,zi-R:'lﬂ) for 1=1,2,...,n-1 .

Since p, p', and x have integral coordinastes, the upper and lower
limits in (14) are integers, and they differ at most by one. A
similar remark is spplicable to (15)., Hence by P, there are numbers
BBy eee,By such that
n
t .t = t
glx',r") 8, * E 2, x}
i=1
for all feasidble ' x' > 2z, Denote by S the set of all indices 1
for vwhich there is a feasible x' >z with x] > z,. For these i,

i

x' =2 + ui is also feasible. The set 8 1s not empty, because

otherwise no feasible =x' would exist by theorem 1, contradicting an
hypothesis of theorem 3. Now let i be an integer in 8 for which

8, is a minimum. Clearly x' = 2z + u, is then optimal, which proves

part (a).
Before proving part (b) we digress to establish a lemms that will
enable us to sharpen the results of theorem 1. Consider the problem of

finding a vector x* +that minimizes a convex function f(x) subject

to the constraints

(16) a,x <b,, 1=1,2,...n .

where the a, and x are vectors and the bi are scalars, Let S

i

be the set of indices 1 for which a,x* < bi' Also consider the

i
same problem where we replace the b, by bi, i.e., (16) becomes

(17) a,x <bl, 1=1,2,...yn .

26
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Lemma l

| t
(a) If b =D, for i¢S and b > a

minimizes f(x) subject to (17).

ix*, for 1eS, then x*

(p) 1If b3 <bJ 4

then there is an x' +that minimizes f£(x) subject to (17) for which

for some J#£S, and if b} = b, otherwise,

adx' = b5 (provided that (17) is feasible).

(e) 1If b3>bd for some J¢S and if bl = b, otherwise,

then there is an x' that minimizes f£(x) subject to (17) for which

b, <a

x' <D
3 >

)
J 3
Proof:

We begin with part (a). Suppose the contrary, that is x!'
satisfies (17) and f(x') < £(x*). Since x* gatisfies (17), so
does x" = & x' +(l-@)x* for 0< G< 1, Dencte by B the et
of indices 1 for which aix' > bi' Clearly B 1s not empty for

otherwise x* could not minimize f(x) subject to (16}, Let

- *
bi aix

a = min T e
1ep 81X ¥%)

Observe that 0 < @ < 1. Also for i¢B,

a,x" = ¢ a,x! +(l-a)aix* < a'bi+(l-a)'bi =b

i i i
and for i1eB
aix" = q a,x! +(1-a)aix* =@ ai(x'-x*)+ &, x*
< (bi-aix*) + (aix*) =D, .
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Therefore x" satisfies (16) and
£(x") < @ f(x') + (L-a)f(x*) < o £{x*)+(1-0)f(x*) = £(x*) ,

which contradlcts the optimality of x¥.
We aleo prove part (b) by contradiction. Thue suppose that x'

minimizes £(x) subjeet to (17), that aJx' <b! , sand that

f(x') < £(x) for all x satisfying (17) for which ayx = bj. Let

b,~b!
b,~-a,x!

Jd

2" = g x' + (1-@)x* where &=

Clearly adx" = bj and aix" < bl for 1 4 3. Also f£(x') > £(x*).

Therefore

£(x") < o f(x')+(1-0)f(x*) < £(x')

which is & contradiction. This completes the proof. The proof of
part (c) is similar and is omitted.

As an example of the way in which part (a) of the lemma can be
applied to our problem, suppose that the production schedule =x is
optimal for p and that, say ¥y < ¥y Then x 18 also optimal for
all ¥y for which ¥y < vy Analogous remsrks apply to varlations of
§i’ ii, and x,. The usefulness of parts (b) and (e¢) of the lemmsa

will become apparent in our proof of part (b) of theorem 3.

Proof of theorem 3-part b:

As usual, we consider only the case where an optimal x is given
for op.
As & preliminary we show that there is an =x' that is cptimal

for p' and that satisfies

28
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(18) ¥y £ Vi
and

(19) xj <%, for 1=1,2,...,k .

The property (18) follows from parte (a) and (b) of lemma 1. As a
consequence if §i > ¥y, We may instead let §i =y, without loss
of optimality.

The proof that (19) holds for the revised parameter set consists
in showing that for any x* that is feasible for p' (revised) and
for which (19) does not hold, there is an alternative schedule x!
that has the properties (i), (11), (ii1) (let =z ==x d4in (1i)) given
in the proof of theorem 1. Once this construction is justified, (19)
follows from an obvious adaptation of the corresponding part of the
proof of theorem 1.

Suppose x* does not satisfy (19). Then there is an integer
1, 1<1<xkx, for which xi > X, We consider two cases, y;_l < Vi1

and ¥l Z ¥y

Case 1: Y g <¥yq e

Let J bDe the largest integer smaller than i for which x§ < xi.

Such an integer must exist for if not

T o) > S (xer)
y* = x¥ay 2 X, - =Y p)
117 & T 2 A TR 1-1

vhich is & contradiction.
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Let ¢ = min(x;-xi, ¥yo17oq x'j-xjj(' . Clearly e >0 and

(20) x*x

i iZe; yt-y'gze for t = J,3+l,¢s.,1-1 and xa-x*d"?_e . -

Consider the alternative production eschedule x' defined by

x! = x* + <-:(u‘_)-ui . It is easy to show that x' is feasible for '

by using (20) and the feasibility of x arid. x¥* respectively for p
and p'.

Now in the usual way

g(x*,r)-g(x!,r) = °J(x3)'°3(x3+e)

1-1
+ L [ (yF)-n (y2+e)] + e, (xF)c, (xfee)

t=)
i 1-1 .
>el-De,(x,) = ¥ Dhy)+Delx)I>0 . ,
J o t;J v [} i & J

The final inequelity follows from the fact that for 0 < 8<e, : l
x(8) = x-B(uj-ui) 1s feasible for p and g(x(8),r) > g(x,r).
We have now established properties (1) and (41). Property (iii)

follows using the same argument given in proving theorem 1. -

Cage 2: y*i*_l > Vi1

Let J Dbe the smallest integer greater than 1 and not exceeding

k for which xg < XJ‘ The integer J exists because if not,

Ines

k
= *- - =
BTt X ) >yt t§1 (xg-re) = ¥ » .

]

vhich contradicts (18). i




Iet € = min(xg-xi, xJ-xj). Clearly € >0 and

*. H - = seasd=ly -x¥ .
(21)  x¥ex, 2 e yP-y, 2 € for t=i,i+l,eii,3-1; and Xg-x§ > €

The alternative schedule x' = x*-%e(uJ-ui) is feasible for p'

as can be shown ueing (21). Also

g(x*,r)-g(xt,r) = ci(xg)-ci(xi-e)

3-1
+ [h, (y*)-h, (y¥-¢)] + ¢, (x¥*)-c, (x¥+e)
tgi L (V1) -n, (yE-e ¢y (x})-c, (x}+e

3-1
> elp'e, (x,) + tzi D'hy (v,)-De, (x,)1 20 .

The final inequality follows from the fact that for 0 <8 < ¢,

x(8) = x-&(uj-ui) is feasible for p and g(x(8),r) > g(x,r). This
establishes properties (i) and (11). Property (i1i1i) follows in the
usual way.

Employing theorem 1, lemma 1, (18), and (19), we see that there

is an x' with the property that

- 1
Vmk S e SV
and
for i=l,2,uca,k ’
and

x! Z X for i=k+l’oco,n .
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But by the hypotheses of theorem 3, g(x',r) is linear in x' for
all x' satisfying the above constreints, i.e., there are numbers
ao,al,...,an such that
' =
glxt,r) a, + Y a
Let 8, Dbe the set of indices i, 1 £1i <k, for which there

1

is a feasible x' with xi < Xy Let 82 be the set of dindices J,

k< J £n, for which there is a feasible x' with x3 > xd. Since

there is a feasible x' either Sl and S2 are empty, in vwhich

case x' = x 1is feasible for op', or Sl and S2 are non empty.

Now 1f we fix yi at any feasible value between yk-l and yk,
we may minimize g(x',r) by finding an integer 1 in 8, for which
&y is a maximum and an integer J in Sa for which aJ is a minimum
and letting x' = x+(yk-yi)(ud-ui). Then g(x',r) = g(x,r)+(yk-yi)(aJ-ai).
Thus to minimize g(x',r) we let yi = Vs i.e., x'=1x, {f

>ea and let yi = yk-l, .y x' =x+ uj-ui, if a.'j < 8.

EJ '1’
This completes the proof.

An Algorithm for Autometic Computation

We now describe a procedure that starte with an x that is optimal
for p = (-r,X, %X, ¥, y) and that has integral coordinates. The
algorithm then proceeds to find an x' that is optimal for
p! = (-r',§',§',§',x') and that has integral coordinates, or discovers
that p' 41is not feasible. The algorithm involves three phases. In
phase 1 the inventory and production constraints are relaxed, one at

a8 time, until an optimal X is found for the corresponding parameter
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set P = (-r, §, _;E, §, §> that has the property that (-';f, P > x,y)
and (g, i) < (x', y'). No infeasibilities can arise in phase 1. The
second phase involves moving r '"toward" r!. This is done so that at
all times each intermedlate reguirements schedule 9, say, is such that
gn"ﬁn < 0. This phase terminates with an % that is optimal for

$ = (-rt, i, g, ?, E), provided that P is feasible. A discussion of
how infeasibilities are dealt with in phase 2 is deferred briefly., The

third phase involves tightening the production and inventory constraints

until p' is reached. If at any step in this final phase, an infeasible

parameter get is found, then D' is not feasible.

We remark that with start 1, phase 2 (and often phase 3) is
omitted, On the other hand with start 2, phase 1 (and often phase 3)
is not needed.

An important simplificetion is possible in phases 1 and 5 whenever
a production or inventory constraint is not binding. The idea is to
take advantage of part (a) of lemma 1. For example if in phese 1 we
find an x that is optimel for D = (-r, §, g, ;, E) and, say,

~ ~

¥y <F; <¥], then ve may immedistely let ﬁi = ;i and still be

~

assured that == 1s optimal lor the revised S. Silmilarly, if we Lind
A .A 2 A & A

in phase 3 an X that is optimal for D = (-r', x, X, ¥, J), and, 8ay,

31 < ;’Ei, x! , then we may immedistely let x, = min(ﬁi,;_:i) without

disturbing the optimality of Q. These shortcuts avoid numerous appli-
cations of theorem 3 and are well worth using.

It remains to develop a means for dealing with infeasibilities in
phase 2, In particular suppose that we seek an x that isg optimal for

p=(-r, X, X, ¥, y). We assume that p is feasible and has integral
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coordinates, and that P holds. Our approach to solving this problem,
hereafter called problem A, is to construect a modified problem, called
problem B, in which the parameter set is p = (-1, §, X, ?, i) vhere
g, 5, and }2 are arbitrary but not effective bounds. In problem B
the ceost function is
- no_ n-1
glx,r) = igl ey (x,) + 1§1 h, (y,)
where
o ¢y (x,) ) B S% S
¢ i(xi) = _ _ _
ci(xi) + M(xi-xi » Xy <Xy
by(x) - Mlyy-g,) » ¥y <Ly
By (ry) ={n,(v,) » % SV SV,

and M is & large positive constant. Notice that if x is feasible
for p, then x 4is also feasible for p; furthermore, g&(x,r) = g(x,7),
Let

a = max D ci(xi) s
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Let M be any number for which (En =h =0)

=11

n
M>max (a, b, b+, )y [Ei + ﬁi - g - Qi]] .
i=1

Since M i1s greater than a, b, b+, the Ei and ﬁi are convex
functions. Hence, the modified cost functions satisfy P,

It follows from theorem 3 and the discussion thereafter that there
exists an x that has integral coordinates and thet is optimal for
problem B, We now show that either x is feasible (and hence optimal)
for problem A or that problem A has no feasible production schedule,

The proof is by contradiction. Suppose that x iz not feasible
for problem A, but that x* (say) is feasible for that prcblem. Then
for some 1, y; > §i+1, ¥y Syl or x> §i+1 since the vy,, y,,

§i’ X5 and §1 are integers., Thus,

n n
glx,r) > M + g ety §1 (¢,+5,)
> S(X*:r) x*,r)

vhich contradicts the optimality of x for problem B, The proof is
complete.

In carrying out the computations, 1t is not necessary to know a
sultable value of M., Instead, when e collection of new schedules isz
examined, as in applying theorem 3, one proceeds as follows. First
locate the "least infeasible" schedules in the class being examined,
i.e., the schedules for which the sum of the amounts by which the ¥y
and y, respectively exceed the §i and 51, and the amount by which
the vy fall below the Iy is minimal. Then, letting M = O, choose

a minimal cost schedule from among those located using E as the cost

function.
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